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We prove theorems on convergence to a stationary state in the course of time 
for the one-dimensional XYmodel and its generalizations. The key point is the 
well-known Jordan Wigner transformation, which maps the X Y  dynamics onto 
a group of Bogoliubov transformations on the CAR C*-algebra over Z t. The 
role of stationary states for Bogoliubov transformations is played by quasifree 
states and for the XYmodel by their inverse images with respect to the Jor- 
dan-Wigner transformation. The hydrodynamic limit for the one-dimensional 
X Y  model is also considered. By using the Jordan-Wigner transformation one 
reduces the problem to that of constructing the hydrodynamic limit for the 
group of Bogoliubov transformations. As a result, we obtain an independent 
motion of "normal modes," which is described by a hyperbolic linear differential 
equation of second order. For the XXmodel this equation reduces to a first- 
order transfer equation, 

KEY WORDS:  Nonequilibrium quantum statistical mechanics; convergence 
to a stationary state; hydrodynamic limit; one-dimensional X Y  model. 

1. I N T R O D U C T I O N  

The one-dimensional X Y  model has attracted the attention of many 
authors.~ 11) The interest in this model is based on its connection to the 
model of "quasifree" motion, which is established via the Jordan-Wigner 
transformation (see Ref. 12, Chapter 6.1, Section 6.2.1 and Notes and 
Remarks on Chapter 6.1). In particular, this connection allows one to 
investigate certain dynamic properties of the X Y  model: the convergence to 
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a stationary state and the hydrodynamic approximation. These problems 
are the theme of this paper. 

The problem of convergence to a stationary state can be stated for 
systems with infinitely many degrees of freedom as follows. First, one has 
to construct a group of *-automorphisms {St, t e R 1 } of the corresponding 
C*-algebra (in our case the quasilocal spin C*-algebra ~3l, CAR C*- 
algebra ~1 , or CCR C*-algebre 11+), which is generated by the (formal) 
Hamiltonian of the model (more precisely, by the corresponding derivation 
on the C*-algebra). Constructing such a group is a nontrivial problem, 
which is solved at present in an appropriate sense only for some classes of 
quantum systems. If an initial state of the system is given, then we want to 
study the time-evolved state S*Q as t ~  +oo. A physically natural conjec- 
ture is that in a "generic" situation the state S*Q converges to an 
equilibrium Gibbs state (or to a mixture of such states). 

To prove the convergence as t ~ +_oo seems to be a difficult problem, 
which can be solved only for a few special classes of models. As a first one, 
we mention the free motion model (13 15) and the class of linear models 
(groups of Bogoliubov transformations/~6'~7)), which includes the free gas 
and harmonic oscillators. Among nonlinear models the simplest ones are 
the one-dimensional XYmodel (~ m and the model of one-dimensional 
(quantum) hard rods(18( A survey of related results is given in Ref. 19. 

A separate subject is the study of "local perturbations," which has 
been initiated in Ref. 20. 

An interesting feature of the above models is that the set of stationary 
states is not exhausted by the equilibrium Gibbs states. For instance, the 
set of stationary states for a (nondegenerate) group of Bogoliubov transfor- 
mations contains a large family of quasifree invariant states. (16'~71 For the 
XY model the stationary states are obtained from quasifree states by means 
of the Jordan-Wigner transformation. A similar construction can be 
carried through for hard rods./~81 

In Section 2 we prove a theorem on convergence to a stationary state 
for the one-dimensional XYmodel  and its generalizations. This is a general 
result on convergence from the point of view of conditions on the 
Hamiltonian (i.e., on the group {St}) and on the initial state Q. Such a 
result is based on general convergence theorems proven for groups of 
Bogoliubov transformations. (17) 

Section 3 is devoted to the problem of a hydrodynamic description of 
time evolution in the XYmodel  and its generalizations. For  the history of 
the formulation of this problem we refer the reader to Refs. 21-23 and to 
the review in Ref. 24. Notice that in the XYmodel  one gets a somewhat 
unusual hydrodynamic equation: this is explained by the degenerate 
character of this model, namely, by the abundance of stationary states (see 
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above). For the isotropic X X  model we obtain an equation for the transfer 
of "normal modes" along straight lines on the cylinder R ~ x [-7c, ~). For 
the general XYmodel a more general differential equation results, which is 
linear, of second order, and of hyperbolic type, and describes an indepen- 
dent motion of normal modes. 

It is worth noting that the hydrodynamic equation we get for the 
X Y  model is similar to the equation obtained for the classical linear models 
(see Ref. 22). We expect that the same is true for one-dimensional hard 
rods: the quantum hydrodynamic equation will have a similar form to the 
classical one (see Ref. 21). This leads to the conjecture that the quantum 
effects are, in a sense, negligible in the hydrodynamic regime (at least for 
degenerate models). However, one should be very careful at this point: the 
coincidence of classical and quantum hydrodynamics may be the con- 
sequence of the fact that the equilibrium states are described by similar 
parameters. If this "rule" is violated (i.e., if one considers a quantum model 
with no direct classical analog), then the quantum hydrodynamics might be 
different from the classical one. 

In Section 4 we briefly discuss some examples of initial states (and 
families of initial states) for which the conditions in the theorems on the 
convergence to a stationary state and on the hydrodynamic approximation 
are fulfilled. 

2, PREL IM INARIES .  C O N V E R G E N C E  TO S T A T I O N A R Y  STATES 
FOR O N E - D I M E N S I O N A L  X Y  M O D E L  A N D  ITS 
G E N E R A L I Z A T I O N S  

Let Jr denotes the complex 2 • 2 matrix algebra. The C*-algebra of 
the one-dimensional quantum spin-l/2 system is defined as the infinite ten- 
sor product 

9J~ = d/Z | (2.1) 

The local *-subalgebra of 9Jl is denoted by 97l ~ and the C*-subalgebra 
corresponding to a "volume" I ~  Z 1 by ~1ll. As usual, we denote by ~<, af ,  
and ors the Pauli matrices associated with the site j e Z  1. Consider the 
derivation c5 on ~lJl given by 

~$A = i[H, A] (2.2) 

where H is the (formal) Hamiltonian of the one-dimensional XYmodel 
with an extra magnetic field, 

/4= Z (~<,7~j+,+/;~f~L_l+hoO% ~,/7, ho~R 1 (2.3) 
j c  Z I 
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Although the series (2.3) diverges, the formula (2.2) is correct due to 
locality of A. The one-parameter group of *-automorphisms { W,, t ~ R 1 } 
of 9Jl generated by 6 determines the dynamics of the one-dimensional 
X Y  model. The time evolution of a given state Q on 93~ is defined by 

W * Q ( A ) = Q ( W _ , A ) ,  A6gJ~ (2.4) 

Denote by ~b the *-automorphism on 93~ defined as 

a; (2.5/ 

As above, this definition is correct due to locality of A. Let 931(+ ) be the 
C*-subalgebra of 9J/consisting of ~b-invariant elements. It is easy to verify 
that 93l( + ) is W,-invariant. 

In the course of the analysis of the one-dimensional XY model a key 
role is played by the so-called Jordan-Wigner transformation, which 
induces a *-isomorphism between ~ (  + ) and the even C*-subalgebra 11~v 
of the CAR C*-algebra 11 over Z 1. The C*-algebra U-  is defined in the 
following way. Let U denote the Hilbert space 12(Z 1) and ~ = exp_ e U the 
fermion Fock space over U. In Jt ~ one defines the action of fermion 
creation and annihilation operators a+(h) ,  a(h),  hE  U, which satisfy the 
CAR [a+(h) depends on h linearly, and a(h)  antilinearly). The C*-algebra 
H-  is generated by { a + ( h ) , a ( h ) } ,  or, equilivalently, by the operators 
a + = a + (ej), a~ = a(e/),  j ~ Z 1, where {e j} is the "canonical" basis in U. The 
local *-subalgebra of U-  is denoted by 11 0. The even C*-subalgebra 1I~ 
of 11- is defined as that generated by monomials a T a f f ,  where aft means 
(independently) at + or a+. The Jordan-Wigner transformation is written 
formally as 

a ~ - ~ I ~  z + ~ (2.6) a~.aj , a~ ~ [-[ a~aj .! 
s < j  s < j  

where 

1 
af- =-~ (a~ + iaf) ,  

1 
aj- = -~ ( ~  -- ia f )  

For second-order monomials a 7 a f t  this transformation is correct. In 
fact, it suffices to write down the corresponding formulas for the 
monomials + + a/ a k and a f  ak with j ~< k; for other cases one may use CAR 
and conjugation: 

+ + + z + a~-ak a + a  z (2.7) a j  a k +--~qj a ( j _ l , k ) O ' k ,  ~ j ( j  l,k)O'k 
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Here (and below) a~j,; I, j < j ' - 1 ,  denotes the product 1-[j<,<j,a~,; for 
j ' - j  = 1 we set a~jd, ) = ~ (the identity 2 x 2 matrix). 

It is possible to verify (see, e.g., Ref. 12, Example 6.2.14) that (2.7) 
defines a *-isomorphism between the C*-algebras 9J~(+) and ll L. This 
map is denoted by ~ and will play a crucial role in what follows. 

On both C*-algebras 93l and !1[- the standard action of the space 
translation group is defined. In both cases we denote this group by 
{Uj, j~ZI} .  The C*-algebras 92I/(+) and lIev are Uj-invariant and the 
*-isomorphism ~9: 99/( + ) -+ 11 L commutes with { Uj}. 

In general, by using the *-automorphism t), one obtains a one-to-one 
correspondence between the groups of *-automorphisms of ~I2R( + ) and II L. 
Furthermore, one obtains a one-to-one-correspondence between the states 
of these C*-algebras, or, which is more convenient, between ~b-invariant 
states of 931 and even states of 11-. 

The isomorphism ~ maps the automorphisms Wt: 9Jr(+) ~ 9J~(+ ) 
onto Bogoliubov transformations (canonical linear transformations) of the 
C*-algebra t[~,. More precisely, the group of *-automorphisms {W~} of 
~ ( + )  generated by the derivation (2.2) is transformed into the group of 
*-automorphisms {3~,} of lI~ generated by the derivation 

~A=i[G,A], A~!I  ~  (2.8) 

where G is the (formal) quadratic Hamiltonian 

G = ~ [g(1)(k-j)  a+ad + g(1)(k- j ) -  a~aj] 
j, k c Z I : j < k  

+ ~ g(2'(k--j) afak (2.9) 
j ,k  ~ Z 1 

The functions g(1), g(2~: Z 1 ~ R 1 are given by 

g( l ) ( j )=  _+(fl_a), j =  _+1 
(2.10a) 

=0,  jr 

g(2)(j) = _(~ +fl),  j =  -t-1 

= 2h 0, j = 0 (2.10b) 

=0,  j r  _+1 

The group of *-automorphisms {J~,} generated by the derivation (2.8) 
transforms the elements a +, ak, j, k EZ j, according to a linear law 
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(precisely this property distinguishes the Bogoliubov transformations 
among general *-automorphisms of 1I ): 

J ~ a f  = a + ( T~l )ej) + a( T~Z)ej) (2. l la) 

Jtta k = a + ( Tl2)ek) + a( Tl 1)ek) (2.1 lb) 

where TJ 1~ is a linear and T121 an antilinear bounded operator on U. 
Equations (2.11a) and (2.11b) allow us to write a more convenient 

representation for the derivation (2.8). Consider the operator 2 x 2 matrix 

 r=(rp' r12'  
~r l  2) TI1)/ (2"12t 

The matrix family { 7 .  t E R 1 } forms the one-parameter group and hence 
may be written as 3 ~-t = exp(it~)), where the matrix �9 reads 

[ ~ = ( B  C)  (2.13) 

The operators B and C are given in the Fourier representation by 

B f ( O ) = 2 [ h o - ( C ~ + f l ) c o s O ] f ( O  ), 0 e [ - ~ , ~ )  (2.14a) 

C f ( O ) = 2 i ( e - i ~ ) s i n  O f ( - O ) - ,  06 [ - ~ ,  n) (2.14b) 

For the case c~=fl (XXmodel) the infinitesimal matrix • becomes 
diagonal. The corresponding group of the Bogoliubov transformations may 
be regarded as an immediate analog of the so-called free motion. 

Equations (2.8)-(2.9) lead to a natural generalization of the XYmodel. 
Consider the hamiltonian G of the form (2.9) where ~1/ is  an odd and ~(21 
a real function on I - re ,  n), and are assumed to be smooth enough. The 
corresponding derivation ~ [see 2.8] generates the group of Bogoliubov 
transformations ~ :  11~ ~ U~v , t e R ~. As above, this group is determined 
by a group of operator matrices {T,} of the form (2.12). The generator 
in the general case is of the form (2.13), where B and C are given in the 
Fourier representation by 

~f(0) = g(2)(O)f(O), 06 [ - ~ ,  ~) (2.15a) 

Cf(O) = - , ~ ( ' ) ( O ) f ( - O ) - ,  06 [ -z r ,  n) (2.15b) 

3 The formal proof of this is to pass to a corresponding group of linear operator 2 x 2 matrices 
(e.g., by multiplying from both sides by diagonal idempotent matrices) and then to use the 
Stone theorem. 
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which generalizes (2.14a) and (2.14b). By using the isomorphism ~ we 
obtain the corresponding group of *-automorphisms if/, : 9J~( + ) --, 9.R( + ), 
t e R I. It is not hard to check that the infinitesimal derivation 3"for { W,} is 
determined by the Hamiltonian H of the form 

FI= ~ [ f ( ' l ( k - j )  r ~ 
j , k ~ Z l : j < k  

+ f ( 2 ) ( k - j )  a)x a(j,k)a~ v + f(3)(k _ j )  a). y a(j,k)a ~ ~ x 

+f(4)(k-j)aYa~(y,k)aX] +h o ~ a~ 
j ~  Z 1 

where ho e R ~ and the functions f/s~: Z~+ __+ R ~, s =  1 ..... 4, are given by 

(2.16) 

1 
h o = ~  g(2)(0) (2.17a) 

f (~ )_  1 Re(g(~)+ g(2)), f(2) 1 2 = 2  i m ( g ( l )  g(2)) (2.17b) 

f(3~ 1 Im _(~/ f ( 4 / =  1 g(21) = 2  (~; + g(2)), ~ Re(g(1)_ (2.17c) 

The Hamiltonian / t  of the form (2.16) and the group { 1~,} are called 
the Hamiltonian and dynamics of the generalized XYmode l ,  respectively. 
In the sequel we shall need some nondegeneracy conditions, which will be 
formulated in terms of functions 

co+ = O d  ~(2~__ w (2.18a) 

where 

w = [(Ev g(2~)2 + ig~xq211/2 (2.18b) 

and Ev ~ and Od ~ denote, respectively, the even and odd parts of a. 
Namely, we suppose that the following condition (A) is fulfilled. 

(A) The functions co_+ are of classes C ~-++1 for some values 
#+ = 2, 3,..., and the sets 

# + + 1  

fl(co_+,/~_++l)= ~ fls(co_+)=~ (2.19) 
j = 2  

Here and below we denote 

/~/~o)-- {0: ~ co(0) = 0}, j~> 1 (2.20) 
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The values #_+ are chosen for the remainder of the paper to be minimal 
among all numbers for which these conditions hold true. 

For  the original X Y  model, condition (A) is fulfilled iff at least two 
values among ~, fi, and h0 are nonzero. The latter restriction appeared in 
Refs. 5 and 6 (where it is called the nondegeneracy condition). 4 

In this section we discuss the problem of convergence to a stationary 
state under the action of the dynamics in the generalized X Y  model. In con- 
nection with this, we introduce the following condition (B) on a ~b-invariant 
state Q of 99l, which is formulated in terms of the even state ~b* a of t l -  
(~9"-~Q stands for the inverse image of Q under ~*): 

(B) For  any m, n = 0 ,  1,..., with even ( m + n ) > 0  there exists 
d =  d(m, n) > 0 such that 

lira sdpCom'~-to(S ) = 0 ( 2 . 2 1 )  
s --~ oo 

Here 

p~m'~te(s ) = sup max (re'n) sun (s~''2;s) 
- - - r  (m',n';rn,n) 

Sl,S 2 ~ Z 1 :s I <. $2 ;/-if,t# 

( r  a~ 1-1 a'+ I-I , ~[ akq J~ Je' a kq, 
1 p ' = l  q ' = l  q = l  

- (~b*-IQ) a + Jp akq  
1 q = l  

x ( r  a -'+ 1F-[ ak;. (2.22) Jp' 
p 1 q ' = l  

and the maximum (""~ maxm,;; ;, on the rhs of (2.22) is taken over all values 
m ' = 0  ..... m and n'=0,. . . ,  n with m' +n'>~ 1, and the second supremum 
s,,,.,~s~.,2;s~ is taken over all ordered sets of integers Jl,'",Jm', ~l-" (rn',n' ;m,n) 

kl,..., k,, e [s 1 , $ 2 ]  and J'l,..-, J ' -  ~', k'l ..... k'~ ,, r Is1 - s, s2 + s]. 
Condition (B) expresses the property of "decay of correlations" in the 

state ~*-~Q.  Of course, this condition may be written in terms of the state 
Q itself. But in such a form it appears to be complicated. A stronger con- 
dition written in terms of Q is the following. 

(B') An element of the *-algebra ~j~0 is called a monomial if it is a 
product of Pauli matrices a~, a f ,  a~. Then, for some d > 0 

(i) slina Sd@)(S)=0 (2.23) 

4 Note  tha t  there is an  er ror  in Ref. 19: on p. 97, s ixth line from the bo t tom.  The  condi t ion  

(fiR)2 q_ h 2 va 0 should  be replaced by (rico 2 + [ho(c~ + fl)]~ > O. 
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where 

~ ) ( s )  = sup sup (~''~2;s) I Q ( A ~ A 2 ) -  Q(A~) Q(A2)I (2.24) 
S l , S 2  ~ Z l : s l  < 82 A 1 , A 2  

and the second supremun in (2.24) 
A l e 91l E,,,s2~ ~ z 1,  A 2 ~ 9Jl z~\ ~ - ,.,2 + $3 ; and 

is taken over all monomials 

(ii) lirnoo sdc~)(S) = 0 (2.25) 

where 

c~)(s) = sup sup {s~''2) A z ]Q( a(s~.,~))l (2.26) 
S 1 ,S 2 ~ Z 1 :S 2 - -  a" 1 ~ S A 

The second supremun in (2.26) is taken over all monomials A ~z~\(~, , ,~-  
We are now able to formulate the theorem on convergence as t ~ +oo 

for states ffT*Q defined by 

17V * Q ( A ) = Q (17V_ , A ), A e gJl 

We call a ~b-invariant state P of 9Jl ~-quasifree if its inverse image t)* - I p  is 
an even quasifree state of 11-. It is clear that a state P of 9)1 is invariant 
with respect to the action of a group { f f / * P - P ,  t e R 1) iff the state t)* 1p 
is invariant with respect to the action of the corresponding group {J,,} 
(~-~t@*-lp~l/l*-lp, t (~ R I ) .  

T h e o r e m  2.1. Suppose that functions ~(~) and ~(2) that determine 
the group of *-automorphisms { ffz} of 9Jl satisfy condition (A) and that 
the initial ~b-invariant state Q of 9J~ satisfies condition (B). Then the states 
ff/*Q converge (in the w*-topology) as t ~ +or  to a limit 0-quasifree state 
P iff 

l i r a  ~ �9 di z ,~2 W, Q(o-) ~(j l,k)ffk ) 
t ~ •  

l,~)Crk), g~1,62= +_,j, k e Z  1, j<~k (2.27) 

Returning to the original XYmodel,  we get an assertion on a con- 
vergence to a stationary (but in general nonequilibrium) state for the non- 
degenerate case (see above). 

Theorem 2.1 reduces the problem of the convergence of states ffT*Q to 
the question of the convergence of their values on elements of a very special 
kind. The latter question will be solved separately. We shall give some suf- 
ficient conditions for the validity of the convergence in (2.27). The 
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remarkable fact is that these conditions are formulated in terms of the 
values of the initial state Q on the same set of elements 

c~ 1 z 6 2 Q(a) a(j 1,k)lTk ), 31,d~ 2 = + ,  j , k ~ Z  1, j<~k (2.28) 

This fact is explained by a linear connection between the values 

{17v*o(af,a~j ~,k)a~2)} and {O(af'~j ~.k/a~2)} 

In view of this, the following construction will be done. 
For fixed 61, 32 +, the values ~1 z h = Q(aj O' ( j_  1,k)O'k ) determine an infinite 

matrix M~ ,~2, which generates a bounded linear operator in U. F o r j  ~< k we 
set the matrix elements (M~,~)j,k to be equal to the values (2.28). Further, 
we set for j > k 

(M~)j,~ ~M ~ ~ = - t  ~ )k,j, 6 =  _+ (2.29a) 

(M~'h)zk = (M~'~2)k.;, 31 # 32 (2.29b) 

The operator under consideration is denoted by the same symbol M~ ,~2. 
The quadruple of operators M~ ,a2, 3~, 32 = +, forms a 2 x 2 matrix 

(M~ ,+ M~'-  ~Q= 
\ M Q  '+ MQ'- /  

Operators (or, equivalently, infinite matrices) M~ ,~, 31,62= +, 
satisfy, in addition to (2.29a) and (2.29b), a number of other conditions. 
Namely, 

- - ,+  ( M ~ ' ) j , k + ( M Q  )k,/--1, k= j 
(2.29c) 

=0,  k C j  

Moreover, the norm IIM~,~2[I ~< 1, and for all f, g e  U 

/ M  +,+c ) + ( M  o, g,f)>~O (2.30) ( M ~ , + f , f ) + ( M d ,  g , g ) + \  o J , g  

It is not hard to check that for any operator 2 x 2 matrix M satisfying 
(2.29)-(2.30) one can find a state Q with ~ e = M  (an example of such a 
state is the O-quasifree state determined by ~) .  

For later use (see Section 3), all the restrictiens on M o listed above 
will be indicated as the condition (C) (imposed on an arbitrary operator 
matrix ~ ). 

The matrices M w7 o and Me,  which correspond to states ff'*Q and Q, 
respectively, are related by 

/~tQ ~-- ~ 1 ~*,'~ 1 [~/~ Q ~ 2 ~ - t ~ 2  (2.31) 
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where 

0) 0) 
and J denotes the complex conjugation in U. 

Equality (2.31) leads to the following invariance condition: 

(2.32) 

In case the operators M~ ,~2 that constitute the matrix ~ o  commute with 
the unitary space translation group { Uj}, it is convenient to pass to the 
Fourier transform. Here 21~/~ ,~2 is the multiplication operator on a function 
rh~,~2: [ - ~ ,  rt)--+ C ~. The functional 2 x 2 matrix constituted by these 
functions is denoted as ~ o  Equality (2.32) takes the form 

~zl ~ a  + NQIz2 = 0 (2.33) 

where 

- \  ~(11 - E v  o8(2)] ' ~-:= --~( ' ) -  - E v  ~(2)// (2.34) 

Let us return to the validity of the relation (2.27). First, consider the 
simplest case, where the values (2.28) do not change if j, k are replaced by 
j + m ,  k+rn,  m ~ Z  ~ (this does not mean that the initial state Q is trans- 
lationally invariant). In terms of the matrix ~Q,  this condition means that 
the operators a/t6,.~2 commute with the unitary space translation operators zr~ Q 

in U, i.e., appearing in the Fourier representation 214~ ,62 are the mul- 
tiplication operators by functions rh~,62: [ - ~ , n ) ~ C  ]. Consider the 
following condition on the functions ~(11, ~(2/: 

(A~) For some value /~o = 1, 2,..., the function w [see (2.18b)] is of 
class C m and the set 

#0 

fl(w,/~0) = ~ fij(w) = ~ (2.35) 
j = l  

[see (2.20)]. 
In addition to the condition (A), the condition (A1) is fulfilled for the 

original X Y  model iff at least two among the values c~, fl, and ho are dif- 
ferent from zero. 

Theorem 2.2. Suppose that ~(1) and ~(2) satisfy condition (A1) and 
that initial operator matrices M Q are constituted by the operators M~ ,62 
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commuting with the space translations. Then, for all 6~, 62= + and 
j, k �9 Z 1, j ~< k, the following limit exists: 

lim i~,r~t.~6~,,z t r62"~--  61 Z 62 t ~d--t~j ~(j--1,k)~k 1 - - P ( a )  a(~_ 1,k)ak ) (2.36) 

and is given by the value of a qJ-quasifree, translationally invariant and 
ffz*-invariant state P. The state P is uniquely determined by the 
corresponding operator matrix ~ e ,  which is given by 

M e = LM Q (2.37) 

where L denotes the linear projection onto the subspace of l}'*-invariant 
matrices [see (2.32)]. In the Fourier transform 

L ~  ~-- 1/2(~ - ~ / -1~  1 ~/~ ~2 ~f~/-1) (2.38) 

~ / - ~ =  I~ ~: (2.39) 

I~ -1 is the multiplication operator on the function w -1 [see (2.18b)] and 
I:~ and ~2 are defined in (2.34). 

Returning to (2.14a) and (2.14b), one can write down the rhs of (2.38) 
for the original X Y  model explicitly. In particular, the equality becomes 
very simple in the case of the XXmodel (c~ =/3) 

L ~  - -  ~x/~ &diag (2.38') 

(here and below "adiag" indicates the off-diagonal part of a matrix). This 
reflects the fact that the corresponding infinitesimal matrix ~ is diagonal: 
in this case a translationally invariant quasifree state is J-*-invariant iff it 
is gauge-invariant. 

In a similar way one can consider initial states Q with "periodic" 
expectation values (2.28), i.e., with values that do not change if j, k are 
replaced by j + ms, k + ms, m �9 Z ~, for some s �9 Z ~. In this case, under some 
conditions on ~(~), ~(2) we can prove the convergence (2.36) with a ~p- 
quasifree and I~/*-invariant, but not necessarily translationally invariant 
(in general, "periodic") state P. For the sake of brevity we shall not go into 
detail and consider here a more general case of initial states with "almost 
periodic" values (2.28) (which, however, will require more restrictive con- 
ditions on ~o), ~(2)). 

Assume that the operators M~ ,~2 in the Fourier representation are 
written in the form 

M~.~2 = f vQ(d2) ~ , ~ 2 ~ .  (2.40) 
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where v is a finite (Borel) measure on [ - ~ ,  re), ~/~,62 tbr every fixed 2 is 
the operator of multiplication by the function rh 61,62'Q,~. . [ - g, ~) ~ C 1, and S~ 
is the operator of the shift on the value 2 [in L2( [ - r c ,  ~))]. The functions 
rh~J2 are assumed to be uniformly bounded [supa0~ E . . . .  ) [rh~J2(0)[ < oe] 
and the measure v is assumed to have a positive atom at the origin: 
v({0}) = Vo> 0. Under these conditions we say that Q is a state with the 
almost periodic expectation values (2.28). 

Such a definition is motivated as follows. In the particular case when v 
is the uniform distribution on the finite set{(2~zl/s)(mod[-~z,~)); 
l = 0,..., s -  1 } we get the periodic case mentioned above. If s = 1, i.e., if the 
measure v is concentrated at the origin, we return to the case considered in 
Theorem 2.2. 

We impose the following condition (A2) on the functions ~(1), ~(2): 
(A2) For  some value # =  1,2 ..... the functions ( ,_+  [see 

(2.18a), (2.18b)] are of class C u and for any nonzero 2~ [ - ~ ,  ~) and 61, 
c~ 2 = ___ the sets 

u 

j = l  

[see (2.20)]. 
For the original X Y  model the condition (A2) holds iff ho r 0 and at 

least one of the values c~ and fi is nonzero. 

Theorem 2.3. Let the functions ~(~), ~(2) satisfy condition (A2). 
Then for any state Q with the almost periodic expectation values (2.28) and 
all ~l, 62 = -+ and j, k e Z ~, j~< k, the limit (2.36) exists and coincides with 
the value of a 0-quasifree, translationally invariant, ff'*-invariant state P. 
This state is uniquely determined by 

~=v0L~e,0 
where L is given by (2.38). 

We now pass to the proofs of Theorems 2.1 2.3. 

Proof of rhoorem 2.1. By using the isomorphism ~, one can reduce 
the problem of studying the states I~*Q of the C*-algebra ~J/ to that of 
studying the states ~-*~*  ~Q of the C*-algebra ~I-. The statement of 
Theorem 2.1 is an immediate corollary of the following proposition (see 
Ref. 17), Theorem 2.1 ). 

P r o p o s i t i o n  1. Let the functions ~(~), ~(2) determining the group of 
Bogoliubov transformations { ~ }  on the C*-algebra 1I- satisfy condition 
(A). Assume that an initial state Q' of 11- is even and satisfies the con- 

822/45/3-4-21 
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dition (B). Then the states J -*Q '  converge (in the w*-topology) as 
t ~ +oe to a ~-*-invariant, even, quasifree state iff for any j, k e Z 1 

lim ~-*Q'(aff ak) = P'(a~ ak) (2.41) 
l ~  mOO 

Proof of Theorem 2.2. Again use the isomorphism ~. This allows us 
to reduce the problem of convergence (2.36) for the expectation values 
(2.28) to the problem of convergence for the values ~ - * ~ * -  1Q(aff ak). The 
values ~*-1Q(af~ak) depend on the differences j - k  only. It is convenient 
to call a state Q' of 11- having this property a state with homogeneous 
expectation values 

O'(a~ak), j, k ~ Z  1 (2.42) 

The statement of Theorem 2.2 will follow from the following proposition 
(see Ref. 17, Section 2.5). 

P r o p o s i t i o n  2. Let the functions ~1), ~2/determining the group of 
Bogoliubov transformations ( ~ }  satisfy condition (A~). Assume that Q' is 
a state of t[ with homogeneous expectation values (2.42). Then, for any j, 
k ~ Z 1, the limits 

lira 9-*O'(af~ak) (2.43) 
t ~  d -oo  

exist and correspond to a quasifree, translation-invariant, ~*- invar iant  
state P'. 

In the same way, the statement of Theorem 2.3 follows from the 
following proposition (see Ref. 17, Section 2.7). In analogy with the above 
definitions, one introduces the notion of a state of the C*-algebra 11- with 
almost periodic values (2.42). 

P r o p o s i t i o n  3. Let the functions ~1), ~2) determining the group of 
Bogoliubov transformations {~-t} satisfy condition (A2). Let Q' be a state 
of U -  with almost period expectation values (2.42). Then, for any j, k ~ Z ~, 
the limits (2.43) exist and correspond to a quasifree, translation-invariant, 
~*- invar iant  state P'. 

3. T I M E  E V O L U T I O N  OF L O C A L  P A R A M E T E R S  IN T H E  
H Y D R O D Y N A M I C  L I M I T  FOR T H E  XY M O D E L  A N D  ITS 
G E N E R A L I Z A T I O N S  

It is convenient to denote by I(y, u) the interval [y  - u/2, y + u/2). We 
suppose that a group of *-automorphisms 1~: 99l( + ) ~ 93l( + ), t E R 1, is 
fixed, which defines the dynamics for a generalized X Y  model (see the 
preceding section). 
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The group {if/,} is determined by a constant h0 and functions 
f(l),..., f(4), or, equivalently, by functions g( l /and  g(2), which are connected 
with fo),...,f(4) by Eqs. (2.17a) and (2.17b). We shall assume that the 
functions g(l) and g(2) satisfy condition (A) of Section 2. In what follows it 
is convenient to denote by # the maximal value of the numbers # _+ figuring 
in this condition [recall that #+ are chosen to be minimal numbers for 
which (2.19) holds]. 

In addition, we assume that the function w given by (2.18b) satisfies 
the conditions (A1) of Section 2. 

Let a family {M~,~2(x), x e R 1, 61, 62 = _+ } be given, where M~'h(x)  is 
a bounded, linear operator in U that commutes with the unitary space 
translation operators. It is convenient to assume that M~'~2(x) satisfies, for 
all x and 61, 6 2, condition (C) (see Section 2). We shall assume as well that 
the following condition holds: 

D. The operators M~'a2(x) depend on x in a smooth way (in the 
uniform operator topology), and the derivative (~/~?x) Ma~'62(x) is a boun- 
ded operator with the norm II(c?fi?x) M~'~2(x)q[, which is bounded 
uniformly in x within any bounded interval of R 1. 

The image 2Q~l'62(x) of M6~'6~(x) under Fourier transform is the 
operator of multiplication by a function rh6~'~2(x,-): [ - r c , ~ ) ~ C  l with 
sup0 ~ ~ . . . .  ) Irh6b~2(x, 0)1 ~< l. The condition (D) implies that (1) for almost 
all 0a  [ - ~ ,  ~) the derivative (8/c?x)ff~6~'6~(x, 0) exists, and the supremum 
ess sup I(c?/c~x) rh6~'62(x, 0)1 is bounded uniformly in x within any bounded 
interval, and (2) for any x e R  1 

lim sup ]A- l (~"~2(x  + 3, 0 ) -  rh~'~2(x, 0)) 
A ~ O  Oe[- -n ,n )  

- ( 0 / a x )  rh~"~(x ,  0)l = 0 

The further conditions may be written in various versions; this will 
imply some differences in the formulation of the results. We first give one 
such version [conditions (E)-(G)  below] and formulate the corresponding 
theorem (Theorem 3.1). Then we give another version [conditions 
(E*)-(G*)  below] and formulate the corresponding theorem 
(Theorem 3.1 *). After this we briefly discuss the difference between the two 
results. 

We continue with the condition that the matrix elements (M61'62(x));.~ 
(in the canonical basis of U) decay sufficiently rapidly. More precisely [cf. 
the conditions (B), (B') of Section 2] we have: 

(E) For some dl ~>min{#, 3} 

lim SdI~(1)(S) = 0 (3.1) 
s ~ o O  
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where 

~(l)(s) = sup sup (M~1'62(x))j,k[ (3.2) 
x E R  1 j , k E z l : [ j  k ] ~ s  

Finally, we suppose that a family of ~b-invariant states { Q~, e > 0} on 
99l is given that satisfies the following two conditions: 

(F) For some dl>~min{~t, 3} 

lim sat~(1)(s) = 0 (3.3) 
s ~ o o  

where 

~'(l)(s)=sup max max I(M~;~2)j.k I 
~ > 0  r162 • J ' k~z l :  

[j-~l>~s 

(3.4) 

Condition (F) is weaker than the conditions (B) and (B') of Section 2 
(because now only m + n =  2 is taken into account in (2.21)]. However, a 
rapid decay of pair correlations should be valid uniformly in e. 

(G) For every e > 0 there exists a even integer N~ > 0 with the follow- 
ing properties. 

(i) The following condition holds: 

lim ~ Iln ~1 N~ = 0 (3.5a) 
a ~ 0  

(ii) F o r s o m e T e [ 0 t + l )  1 # , l )  

lim dN~ = o o  
s  

(iii) For all v e Z  ~ and all integers Sx, s2 from 
I (vN, ,  1/2N~) 

(3.5b) 

the interval 

~< (Pm([Sl -sx[)  r s2}, Rl \ I ( vX~ ,  1/2N~))) (3.6) 

where ~1, $ 2 : R 1  --* R I  are decreasing Ll-functions. 
Notice that from condition (G) it follows that for all x6  R 1 and s, 

St ~ Z 1 

lim ~ A,t~,,~2~ ~ 0  I,~WQ~ In(a,x)+s,n(~,x)+s' 

= ( M & " 5 2 ( X ) ) s , s  ,, 0 1 ,  62= 4- (3.7) 
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where 

n(g, x ) =  [[~ 'x ]  N ~ ' ]  N~ (3.7') 

Moreover, given x e R ~, the convergence in (3.7) is uniform with respect to 
s, s' in any bounded interval (and even in an interval In(e, x ) - o ( e - J ) ,  
n(e,x)+o(e-~)]) .  Physically speaking, the family of operators 
{Ma"a2(x), x c R ~, cS~, ~ 2  = ~--- } determines the macroscopic spatial "profile" 
of local parameters that characterize the states Q~, e > 0. The role of these 
parameters is played by the expectation values (2.28). The value e indicates 
the "typical" ratio of micro- and macroscales in space and time. 

Condition (G) [as well as condition (G*) below] expresses the 
property of "hydrodynamic stability" of the family {Q~} at time 0. The 
problem of the hydrodynamic description of the evolution involves, in par- 
ticular, the verification of the hydrodynamic stability at a macroscopic time 
tO0.  

T h e o r e m  3.1. Assume that the group {~/,}, the family of 
operators {Ma~'a~(x), x~R1, ~1, ~2 = ~}, and the family of states 
{Q~, e > 0} satisfy the conditions (A), (A~), and (C)-(G)  formulated above. 
Then for all x e R ~, s, s' E Z ~, and nonzero t e R 1 the following limit exists: 

lim (M~,.a~ o~)~(~,~ ) +,,,(~,u) +,, 
g ~ 0  

= (Ma"a2(t; x ) ) s j ,  c~1,62= ~__- (3.8) 

The limiting values (3.8) determine the operators Mal'a2(t;x) with 
(Mal'a2(t; x)),~,,2 = (Ma~'a2(t; X))o.s; ,, (i.e., the operators that commute with 
the unitary operators of space shifts). Moreover, the operators Mal'a2(t; x) 
satisfy the invariance equation (2.32). 

The second version of the restrictions consists of the following con- 
ditions: 

(E*) The relation (3.1) is valid for any d I > 0. 
(F*) The relation (3.3) holds for any dl >0.  
(G*) For every e > 0  there exists an even integer N~>0  with the 

following properties: 

(i) l im~0e~~ l im~oF~N~=c~  for some 70 and ~ that obey 
( # +  1) -~ # ~ < ~ < 7 o <  1. 

(ii) For all u ~ R  ~ and integers s,s 'EI(uN~, 1/2N~) 

[(a//al,a2~ -- (Ma~'a2(euN~) )ss, I ~ , *  Qe /s,s '  

< min{~( I s - s ' l ) ,Coe l s -uN~i ,  CoelS'-UN, t} (3.6*) 
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where Co > 0 is a constant, and ~ is a monotonic, nonnegative function 
such that lim~_ ~ saO(s)= 0 for any d > 0 .  

T h e o r e m  3.1.*. Assume that the group { l~} ,  the family of 
operators {M61'6~(x)}, and the family of states {Q~, e > 0 }  satisfy the con- 
ditions (A), (A1), (C), (D), and (E*)-(G*),  Then, for all x e R  ~, s, s ' e Z  ~, 
and nonzero t e R 1 the following limit exists 

lim (M~2o~)~,-~3+~,~-~l+~,=(M6~'~2(t;x))~,s,, 6~, 62= -+- (3.8*) 
e . ~ 0  

The limiting values (3.8*) coincide with (3.8). 
The formal difference between Theorems 3.1 and 3.1" is that n(e, x) is 

replaced by more "plausible" space scaling [e ~x]. However, the difference 
between (G) and (G*) [more precisely, between (3.6) and (3.6")1 is more 
serious. The assumption (G) means, roughly speaking, that the state Q~ is 
"almost homogeneous" on any interval I(vN~, 1/2N~), v s Z ~, whereas (G*) 
says that Q~ is "slowly varying" on Z 1. For verifying conditions of both 
theorems one uses the theory of Gibbs states (see Section 4). 

The family of matrices { ~ (t; x), x e R ~, t ~ R~\ {0 } } constituted by the 
operators M6~'h(t; x) may be computed via the initial family of matrices 
{ ~ (x), x e R1 } made up of the operators M 6~'6~(x). Let ~( t ;  x) and ~(x)  
denote the functional 2 x 2 matrices that correspond to ~ ( t ;  x) and M(x), 
respectively, after taking the Fourier transform [recall that the functions 
rh6~'62(t; x , ' )  and rh6~'62(x,'), which make up the matrices ~ ( t ; x )  and 
~(x),  are defined on [ - ~ , ~ ) ] .  Consider the functional matrices 
~,(x,  6), x, t e R x, 6 = +_, given by 

0t) 
\ rh- '+(x-co~(O) t, O) r~-' ( x - c o ; ( 0 )  t, 0) ' 

T h e o r e m  3.2. 
in the form 

O e C - ~ , ~ )  

(3.9) 

The matrices ~( t ;  x), x e R ~, t s R~\{0 }, are written 

where 

f f ~ ( t ; x ) = l / 2 [ ~ + ( t ; x ) + ~  ( t ;x) ]  (3.10a) 

~+(t;  x) = 1/2[-~,(x, + ) -  ~/ l~zl~'fi~t(x, +) 

+]~,(x ,+)  ~:2~/ l - W - ~ z l ~ t ( x , +  ) Iz2~/-13 (3.10b) 

(t; x) = 1 /2[  ~ t ( x ,  - ) + ~ / -  ~-~'~ff~t(x, - ) 

- ' ~ , ( x , - )  ~:2~/-~ -@-1~:,~5,(x,-) ~:2~/-'3 (3.1Oc) 
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Here o) 
where E is the unit operator in 0 and the matrices ~:1, ~2, and ~/ ~ are 
defined in Section 2 [see (2.34), (2.39)]. If the matrices 6n(x) satisfy the 
invariance equation (2.35), then the formulas (3.11b) and (3.11c) can be 
simplified: 

~ + ( t ; x ) = ~ t ( x , + ) + ~ l W  l~,(x,++_) (3.11) 

Here ~1 =/~1 ~-, where /}1 is the operator of multiplication by the function 
Ev ~{2), and E is the unit matrix. 

Proof of Theorems 3. l, 3.1", and 3.2. As in the preceding section, 
we use the *-automorphism 0. Then we obtain the family of even states 
{0" ~Q~:, e>0}  of the C*-algebra 11-. The following result proven in 
Ref. 23. (see Ref. 23, Theorems 3.1 and 3.1') is nothing but the refor- 
mulation of Theorems 3.1, 3.1", and 3.2. 

P ropos i t ion  4. Let the functions g{l) and g{2) determining the 
group of Bogoliubov transformations {~,} on the C*-algebra 1I satisfy 
the conditions (A) and (A1) of Section 2. Assume that the initial family of 
the operator matrices {M(x), x e R ~ } is given, which is constituted by the 
operators M<'a~(x), c51, 62 = ___, satisfying conditions (C) and (D) of this 
section. Let {(Q')~, e > 0} be a family of even states of the C*-algebra 11 
which satisfy either the conditions (E)-(G) or the conditions (E*)-(G*) 
[replacing Q~ by (Q')~]. Then, for any x, t e R  ~, t#O, and s , s ' e Z  ~, the 
limits (3.8) [respectively, (3.8*)] exist, and the operator matrices M(t; x) 
made up of the limit operators Ma~'a2(t;x), 61,61= +_, are defined by 
(3.10)-(3.11). 

The evolution of the spatial profile of the local parameters as given by 
(3.10)-(3.11) may be described by means of a system of differential 
equations (which plays, for the generalized XYmodel, the role of the Euler 
system of equations). In the general case this system has a complicated 
form, which simplifies somewhat if one assumes that the initial family 
{~n(x)} consists of matrices satisfying Eq. (2.33). In this case the family 
{~(t;x)} may be described as the solution of the following Cauchy 
problem: 

6~2 602 ~2 ^ 
&2~(t;x)+(oo++co')O--~x~(t;x)+co+co'_ ~x2 ~(1; x ) = 0  (3.12) 

~(0; 0) = ~(x)  (3.13a) 
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8 
&~( t ;x ) l ,=o  

1 +EVwg(2) ) (1 Ev~(2)) 8 
- 2 I ( 1  co'++ -- co' ] ~--xx ff~(x) (3.13b) 

The main feature of the problem (3.12), (3.13a), and (3.13b) is that, 
given 0 E [ - re, 7t), the family of (complex) 2 x 2 matrices 
{~(t; x, 0), t, x e  R ~ } is varying in space and time "independently" of other 
families. Physically speaking, one gets an independent evolution of various 
"normal (matrix) modes" indexed by points of the circumference [ - r  t, 7z). 

For the original XYmodel Eq. (3.12) takes the form 
82 
8t ~ fire(t; x) - 4[ho(c~ + fl) sin 0 - 2eft sin 20] 2 

1 8 2  ^ 
x{[ho-(e+fl) cosO]2+(o~-fl)2sin20} ~5x2 re(t; x) = 0 (3.14) 

Finally, for the XXmodel the matrix & (t; x ) =  0 and only one term 
remains in the formula (3.10a). This is the antidiagonal matrix N+(t; x). 
Here the hydrodynamic equation looks very simple even without the 
assumption that the initial matrices ~(x)  satisfy (2.33). Namely, in this 
case one gets the equation 

_8 -4~ sin 8 ~(t; x) = 07-- ~(t; x) (3.15) 
at o x  

with the Cauchy date 

~(0; x) = L~(x) = ~aaiag(X) (3.16) 

[cf. (2.38')]. This is the transfer equation, which describes the independent 
motion of normal modes indexed by the points of I-re ,  re). The value 
4e sin 0 is the "velocity" of the motion for the mode labeled by 0. Notice 
that the value ho does not appear in the hydrodynamic description of the 
XJ(model: this reflects the well-known fact that the normal mode velocity 
is given by the gradient of the energy density, which is given here by 
2(ho - 2c~ cos 0). 

4. EXAMPLES OF STATES SATISFYING THE C O N D I T I O N S  OF 
SECTIONS 2 A N D  3 

In this section we give examples of initial states Q and families of 
initial states {Q~} of the C*-algebra 9X for which the conditions of the 
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above theorems are fulfilled. The simplest way to construct such examples 
is to consider O-quasifree states with given matrices ~Q [-see (2.30)]. 
However, a larger (and physically more natural) class of examples may be 
given by means of the theory of Gibbs states (KMS states) (Ref. 12, Chap- 
ters 5.3, 5.4, 6.1, 6.2). 

For the sake of brevity we state the results without proofs. The proofs 
require a modification of well-known constructions used in the references 
cited below that is rather simple in principle, but quite complicated on a 
technical level. 

In the process of constructing KMS states one usually starts with a 
derivation O on the C*-algebra ~ which, formally speaking, may be writ- 
ten as 

OA = i[h, A] (4.1) 

[cf. (2.2), (2.8)], where the (formal) Hamiltonian h is the infinite sum 

h =  ~ h (jl (4.2) 
j ~  Z 1 

of ~b-invariant Hermitian elements h (j) ~ 9J~(h (j)* = h (J)), j 6 Z 1 (the condition 
of ~b-invariance is supposed to hold in what follows without repeating it 
every time). 

In particular, the translationally invariant Hamiltonians are written as 

h= ~ U~b (4.3) 

where b is a fixed Hermitian element of 9)l. Among the translationally non- 
invariant Hamiltonians, the simplest ones are perhaps periodic 
Hamiltonians, which are characterized by the following condition: there 
exists a positive integer k and a collection of Hermitian elements 
bo ..... bk 1 ~ 9J~ such that 

h(J)=Ujb~ if j=s(modk),  j ~ Z  1, s = 0  ..... k - 1  (4.4) 

The smallest number k with this property is called the period of the 
Hamiltonian h. 

Translationally invariant and periodic Hamiltonians lead to trans- 
lationally invariant and periodic derivations, respectively [UjOA= 
OUjA, j ~ Z  1, and UjOA=OUjA, j=O (mod k)]. 

The problem of the existence and uniqueness of KMS states of the C*- 
algebra 9)l that correspond to translationally invariant Hamiltonians (4.3), 
in the case of a local element b E 9J~ ~ has been investigated in a series of 
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papers(25 27) initiated by the fundamental results by H. Araki. (25/ The 
existence and uniqueness of KMS states were later proven for the case 
where the element b ~ 9J~ is approximated "sufficiently rapidly" by elements 
of the local *-algebra 93l~ (28'29) 

The KMS states constructed in Refs. 25, 28, and 29 are ~b-invariant 
(because the element b is ~b-invariant), translationally invariant, and satisfy 
condition (B'), part (i) on the decay of correlations [see (2.23)-(2.24)]. 

Analysis of the proofs in Refs. 25-29 shows that the existence and uni- 
queness of KMS states also occur for periodic Hamiltonians whenever 
the corresponding "generating elements" bo,..., bk_l are either from the 
*-algebra 99l o or a approximated sufficiently rapidly by local elements. 
Moreover, the KMS states arising here are ~b-invariant and have good 
properties of the decay of correlations. 

However, for verifying the conditions (B) (see Section 2) and (F) and 
(F*) (see Section 3) we need to pass to the C*-algebra 11-. From this 
point of view it is convenient to investigate directly the corresponding 
states of 11 . Hence, we restrict ourselves to studying the Hamiltonians h of 
the form (4.2) with 

h(J) = (~i + 1 ) a f  a f  - 1/2(a? a;a s + 1  - -  O ' 2 0 " ; O ' j ;  1 ) 

+ ~ V ( j ' - j )  a+a?aj +aJ, (4.5) 
j ' : j '  >1 j 

where {/~s} is a periodic (tXj+~m----#j, j, m ~ Z  ~) sequence of reals with the 
period k (if k = 1, then/xj =/~o), and V is a real-valued function on the set 
of nonnegative integers with a finite support [ V ( j ) =  0 for j>~ ro]. After 
applying the *-isomorphism 0, we have that the Hamiltonian h 
corresponds to the (formal) Hamiltonian 

1 
g= 2 Z a+(Aa)j + Z #jafaj 

j E Z  1 ] E Z  1 

+ ~ V ( j ' - j ) a +a jaSa  J, (4.6) 
j , j ' :  j '  ~ j 

This correspondence may be extended onto KMS states: the (unique) 
KMS state Q with respect to the group of *-automorphisms of the C*- 
algebra gJl generated by the derivation O of the form (4.1), (4.2), (4.5) has 
the inverse image 0* IQ, the KMS state with respect to the group of 
*-automorphisms of the C*-algebra 11 generated by the derivation 

~PA=i[g,A] (4.7) 

[cf. (2.8), (2.9)], where g is of the form (4.6), (4.7) [notice that O* - 1Q is 
the unique KMS state for this group]. 
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to the groups 
Furhtermore, 
(2.26). 

We note that the study of KMS states with respect to the derivation 
(4.6), (4.7) may be done without using the isomorphism ~, by means of the 
methods developed in Refs. 30-35. More precisely, by using these methods, 
one can prove the following assertion. 

T h e o r e m  4.1. Let {/~j} be a periodic sequence, and V: Z 1 ~ R ~ be 
a function with finite support. Then there exists a unique KMS state G 
with respect to the group of *-automorphisms of 11- generated by the 
derivation g' [see (4.6), (4.7)]. This is the state with periodic expectation 
values (2.42), which satisfies the condition (2.21) for any d > 0  [in fact, 
p(am'")(s) decays exponentially as s-- ,oe] .  Moreover, for any given 
c ~ , c 2 E R l ( c ~ c 2 ) ,  the quantity p~m'"l(S) decays uniformly for all 
KMS states G corresponding to sequences {/ZJ} with Cl ~ #j ~< c2 (and the 
fixed function V). If {/~j} is a translationally invariant sequence, then G is 
the translationally invariant state. 

Theorem 4.1 indicates the class of states on the C*-algebra 93l for 
which one can check the condition (B), the main assumption (on the initial 
state) figuring in Theorem 2.1. This is the class of KMS states with respect 

generated by derivations O of the form (4.1), (4.2), (4.5). 
Theorem 4.1 solves the question of verifying the relation 

To check the assumptions of Theorems 3.1 and 3.1" we have to con- 
sider a family of Hamiltonians {h~, e > 0 }  of the form (4.2), (4.5), or, 
equivalently, the corresponding family {g~, e > 0} of the form (4.7), where 
the sequence {#j} depends on ~:/~j=#~, j ~ Z  1. More precisely, fix a 
smooth, periodic function 2(x), x e R 1, with the period u > 0 and consider 
one of the two versions: 

(a) Fix a family of even integers N~, e > 0, satisfying (3.5a), (3.5b) 
and set 

/~=2(vu[e  ~N~u] ~) if j~I(vN~, 1/2N~) (4.8) 

for some v ~ Z l 

(fl*) /~=)~(U[8 lbt] l j),  j@Z 1. (4.8*) 

In both cases {#~, j ~ Z  1 } is a periodic sequence for any e>0 .  
Let Gx, x e R  1, denote the KMS state with respect to the group of 

*-automorphisms of lI generated by the derivation ~u of the form (4.6), 
(4.7) with/~j = 2(x). Then the corresponding state Qx = O*Gx is KMS with 
respect to the group of *-automorphisms of 9J/generated by the derivation 
O of the form (4.1), (4.2), (4.5). We set 

m~'~2(x)=M~; ~2, C~l, 62= _+ (4.9) 
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Since the states Gx (as well as Qx) are translationally invariant, the 
operators Ma"h(x) commute with the unitary operators of the space shifts. 
By construction, Mal'a2(x) satisfy the condition (C) (see Section 2). Notice 
(although this is not used below) that these operators are periodic in x. 

By means of the methods developed in Refs. 25-29 and in Refs. 30-35 
it is not hard to prove the following result. 

Theorem 4.2. The family of operators {M<'62(x ) , xER1 ,61 ,  
62 = __} satisfies the conditions (C), (D), and (E*) [and, hence, (E)]. In 
fact, the quantity ~(1)(s) decays exponentially as s--, oe. 

Now we take the states Q~= O*G ~, ~ > 0, where G ~ is the KMS state 
for the group of *-automorphisms of 11- generated by the derivation ~ of 
the form (4.7) where the periodic Hamiltonian g~ is given by (4.6) with #~ 
of the form either (4.8) or (4.8*). The equivalent definition is that Q~ is the 
KMS state for the group of automorphisms of TA generated by the 
derivation O ~ of the form (4.1) where the periodic Hamiltonian h~ is given 
by (4.2), (4.5) with the same /,~. As mentioned above, the existence and 
uniqueness of these states may be proven by using the methods of 
Refs. 25-35. 

Theorem 4.3. The family of states {Q~,e>0} satisfies the con- 
ditions (F), (G) [respectively, (F*), (G*)]. Thereby, the families of 
operators {M<'a~(x), x e R  1, 61, 62= _+} and states {Q~, e > 0 }  satisfy the 
assumptions of Theorem 3.1 (respectively, Theorem 3.1"). 

This assertion, as well as those of Theorems 4.1 and 4.2, follows from 
arguments developed in the references cited above. 

A C K N O W L E D G M E N T S  

The authors are grateful to H. Spohn for his help with the English 
translation of the text. One of us (Yu.M.S.) thanks the Institut de Physique 
Th6orique of Louvain-la-Neuve for their warm hospitality. The authors 
express their deep gratitude to the referees for comments and remarks. 

R E F E R E N C E S  

1. G. G. Emch and C. Radin, Relaxation of local thermal deviations from equilibrium, 
J. Math. Phys. 12:2043 2046 (1971). 

2. D. W. Robinson, Return to equilibrium, Comrnun. Math. Phys. 31:171-189 (1973). 
3. V. V. Anshelevich and E. V. Gusev, First integrals of one-dimensional quantum Ising 

model with transverse magnetic field [in Russian], Teor. Mat. Fiz. 47(2):230~242 (1981). 
4. V. V. Anshelevich, First integrals and stationary states of the Heisenberg quantum spin 

dynamics [in Russian], Teor. Mat. Fiz. 43(1):107-110 (1980). 



One-Dimensional XY Model 693 

5. E. V. Gusev, First integrals of some stochastic operators of statistical physics [in 
Russian], Diss. Thesis, Moscow State University (M. V. Lomonosov) (1982). 

6. E. V. Gusev, Limit states for planar Heisenberg dynamics with diametrical magnetic field 
[in Russian], Usp. Math. Nauk 36(5):177 178 (1981). 

7. H. Araki and E. Barouch, On the dynamics and ergodic properties of the XY-model, 
J. Stat. Phys. 31:327-345 (1983). 

8. H. Araki, On the XY-model on two sided infinite chain, Publ. R IMS Kyoto Univ. 
20:277-296 (1984). 

9. H. Araki and T. Matsui, C*-atgebra approach to ground states of the XY-model, in 
Statistical Physics and Dynamical Systems, Rigorous Results, (Birkhauser, Basel, 1985), 
pp. 17~40. 

I0. H. Araki and T. Matsui, Ground states of the XY-model, preprint, RIMS Kyoto Univer- 
sity, Japan (1984). 

11. V. V. Anshelevich and M. Sh. Goldshtein, Operator algebras in statistical mechanics and 
non-commutative probability theory [in Russian], Modern Problems of  Mathematics. 
New successes 27:191-228 (1985). 

12. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, 
Vol. 2 (Springer-Verlag, New York, 1981). 

13. O. E. Lanford and D. W. Robinson, Approach to equilibrium of free quantum systems, 
Commun. Math. Phys. 24:193-210 (1972). 

I4. R. Haag, R. V. Kadison, and D. Kastler, Asymptotic orbits in a free Fermi gas, Commun. 
Math. Phys. 33:(1):1 22. 

15. Yu. M. Suhov, Convergence to equilibrium for free Fermi gas [in RussianJ, Teor. Mat. 
Fiz. 55(2):282 290 (1983). 

16. Yu. M. Suhov, Linear boson models of time evolution in quantum statistical mechanics 
[in Russian], Izv. Akad. Nauk SSSR Ser. Mat. 48(1):155-191 (1984). 

17. A. G. Shuhov and Yu. M. Suhov, Ergodic properties of groups of Bogoliubov transfor- 
mations of CAR C*-algebras, Preprint, KU Leuven (1985). 

18. Yu. M. Suhov, Convergence to equilibrium state for one dimensional quantum system of 
hard rods [in Russian], lzv. Akas. Nauk SSSR Set. Mat. 46(6):1274 1315 (1982). 

19. A. G. Shuhov and Yu. M. Suhov, Linear and related models of time evolution in quantum 
statistical mechanics, in Statistical Physics and Dynamical Systems. Rigorous Results 
(Birkhauser, Boston, 1985), pp. 83-104. 

20. D. D. Botvich and V. A. Malyshev, Unitary equivalence of temperature dynamics for ideal 
and locally perturbed Fermi gas, Commun. Math. Phys. 91:301-312 (1983). 

21. C. Boldrighini, R. L Dobrushin, and Yu. M. Suhov, One-dimensional hard rod caricature 
of hydrodynamics, J. Star. Phys. 31:577-615 (1983). 

22. R. L. Dobrushin, A. Pellegrinotti, Yu. M. Suhov, and L. Triolo, One dimensional har- 
monic lattice caricature of hydrodynamics, preprint, Universita degli Studi di Camerino, 
Italy (1984). 

23. A. G. Shuhov and Yu. M. Suhov, Hydrodynamic approximation for groups of Bogoliubov 
transformations in quantum statistical mechanics [in Russian], preprint, Institute for 
Problems of Information Transmission, Moscow (1986), to appear in Tr. Mosk. Mat. 
Obsch. 

24. R. L Dobrushin, Ya. G. Sinai, and Yu. M. Suhov, Dynamical systems of statistical 
mechanics [in Russian], Modern Problems of  Mathematics, Fundamental Directions 
2:235 284 (1985). 

25. H. Araki, Gibbs states of a one dimensional quantum lattice, Commun. Math. Phys. 
14:120-157 (1969). 

26. V. V. Anshelevich, Uniqueness of KMS states of one dimensional quantum spin systems 
with a finite range potential [in Russian], Teor. Mat. Fiz. 13(1):120-130 (1972). 



694 Shuhov and Suhov 

27. H. Araki and P. D. F. Ion, On the equivalence of KMS and Gibbs conditions for states of 
quantum lattice systems, Cornmun. Math. Phys. 35:1-12 (1974). 

28. H. Araki, On uniqueness of KMS-states of one-dimensional quantum lattice, Comrnun. 
Math. Phys. 44:1-7 (1975). 

29. A. Kishimoto, On uniqueness of KMS states of one-dimensional quantum lattice systems, 
Cornrnun. Math. Phys. 47:167-170 (1976). 

30. Yu. M. Suhov, Limit density matrices for one-dimensional continuous systems in quantum 
statistical mechanics [in Russian], Mat. Sbornik 83:491-512 (1970). 

31. Yu. M. Suhov, Regularity of the limit density matrices for one dimensional continuous 
quantum systems [in Russian], Tr. Mosk. Mat. Obsch. 26:151-179 (1972). 

32. Yu. M. Suhov, Existence and regularity of the limit Gibbs state for one-dimensional con- 
tinuous systems of quantum statistical mechanics [-in Russian], Dokl. Akad Nauk SSSR 
195(5):1024-1027 (1970). 

33. Iu. M. Souhov, Sur les syst~mes continus de la m6chanique statistique quantique fi une 
dimension avec une int6raction de port6e infinie, C. R. Acad Sci. Paris A 279:433M34 
(1974). 

34. Iu. M. Souhov, Absence de transitions de phases dans les syst6mes continus de la 
m6chanique statistique quantique fi une dimension, C. R. Acad. Sci. Paris A 279:475-477 
(1974). 

35. Yu. M. Suhov, Limit Gibbs states for some classes of one dimensional systems of quantum 
statistical mechanics, Commun. Math. Phys. 62:119-136 (1978). 


